
ForEachBox 2.0 © 2012 Volker Semken

ForEachBox is a scripting and automation tool for various Cisco

devices. It supports the command line interface of the Cisco

Nexus, IOS, ASA, ACE and WLC series. It is implemented as a Java

GUI and requires the Plink tool that is included in PuTTY.

It features command macros, which allow Expect-Send clauses and dynamic

parameters in commands. Results can be saved to files or condensed in data

collections.

Contact

 Website: http://www.semken.com/projekte

 Email: Volker@semken.com

Disclaimer:

ForEachBox is an automation tool, which can change settings of many devices at

one click. Special care should be taken using this software and the test option be

considered. I shall not be held responsible for any harm or damage caused by

this software, including system or network outages, costs for restoring to a

previous state or damage to the management systems. This software is provides

as-is, use at your own risk.

The following is the legal warning quote from the PuTTY web site.

LEGAL WARNING: Use of PuTTY, PSCP, PSFTP and Plink is illegal in countries

where encryption is outlawed. I believe it is legal to use PuTTY, PSCP, PSFTP and

Plink in England and Wales and in many other countries, but I am not a lawyer

and so if in doubt you should seek legal advice before downloading it. You may

find this site useful (it's a survey of cryptography laws in many countries) but I

can't vouch for its correctness.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://www.semken.com/projekte
mailto:Volker@semken.com
http://rechten.uvt.nl/koops/cryptolaw/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Licenses

ForEachBox is copyright 2012 Volker Semken.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the

Software without restriction, including without limitation the rights to use, copy,

modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Other copyrights

All images used in the software under Creative Commons Attribution 3.0 License,

author Fresh Web Icons.

Cisco® and IOS® are registered trademarks or trademarks of Cisco Systems,

Inc. and/or its affiliates in the United States and certain other countries.

http://www.fatcow.com/free-icons/

ForEachBox Handbook

Content

1 Installation .. 5

1.1 Security consideration ... 6

2 General operation ... 7

2.1 Login .. 7

2.2 Device Prompt ... 8

2.3 Jump Box Support .. 8

2.4 Job Results .. 9

3 Usage and settings ... 11

3.1 Button Bar ... 11

3.2 Job definition ... 12

3.2.1 List of hostnames ... 12

3.2.2 Commands List .. 13

3.2.3 Global Parameters .. 14

3.3 Authentication and Access ... 15

3.3.1 Device Access .. 15

3.3.2 Jump Box Access .. 16

3.3.3 Security Options .. 17

3.4 Messages logging ... 18

3.5 Settings .. 21

3.5.1 Plink Options ... 21

3.5.2 File Logging ... 22

3.5.3 Data Collection .. 24

3.6 Dataset ... 25

3.7 Scheduler .. 26

3.8 Keyboard shortcuts ... 27

3.9 Error Handling ... 27

4 Automation .. 29

4.1 Placeholder .. 29

4.2 Command Macros ... 31

4.2.1 CONDITION macro ... 33

4.2.2 EXPECT macro ... 34

4.2.3 VARIABLE macro .. 35

4.2.4 QUERY macro .. 37

4.2.5 COLLECT macro ... 38

4.2.6 REPLACE macro ... 39

4.2.7 LOOP macro .. 39

4.2.8 EDIT macro ... 41

4.2.9 TIMEMOUT macro ... 42

4.2.10 WAIT macro .. 43

4.2.11 Macro Flow Chart ... 43

4.3 Command Syntax ... 44

4.4 Script Examples ... 48

5 Hints and Caveats .. 50

5.1 Limits ... 50

5.2 Known Problems .. 50

5.3 Usage on Linux .. 51

5.4 Version of Plink .. 51

1 Installation

ForEachBox does not use a setup; just copy the two files ForEachBox.jar and

Plink.exe to a working directory. All generated logging and projects files are also

stored in this directory by default.

ForEachBox requires Java JRE 1.4 or later. It has been tested to work on

Windows and Linux, but should run on any platform, where Java and Putty are

supported.

If ForEachBox is started the first time, it comes up with a few defaults. These

settings are stored in the file foreachbox.ini in the home directory.

1.1 Security consideration

ForEachBox needs authentication information to login to devices and systems. It

attempts to be as sensitive as possible with this information. It does not save

any passwords, pins or the information about the private key file to a project file

by default. It can be configured to save account information to project files or in

the users settings file in an obfuscated manner.

Passwords and keys from the device output are not filtered and are saved to log

files with any other information. The used file names are described in this

document. Besides the configured logging files no additional temporary file is

used. All information in the Messages log is kept in memory.

Passwords and Pins provided to the application are stored in memory. Attempts

are undertaken to wipe these from memory after use or before the application

closes. Garbage collection and code optimization can build copies of these

memory areas, where it becomes difficult to ensure, that passwords are not

retained in memory, even after the application is terminated.

For SSH authentication the password can optionally be included in the command

line for Plink. This password has to be provided in clear text. Any other

application with administrative rights can query this command line and gain

access to the username and password used for authentication. This information

is only available during the runtime of Plink.

2 General operation

ForEachBox is an automation tool to apply a set of commands to a set of network

devices. It’s been developed for Cisco® devices but with its flexibility should also

work with other devices and command line interfaces. Commands can contain

placeholder and macros allowing dynamic command scripts. This allows scripting-

like features without the burden of using a scripting language like Perl or Expect.

ForEachBox uses the PuTTY tool Plink for all interactions with a device. It allows

connections via the Telnet and SSH protocol. The Plink tool can use all the

features and knobs of PuTTY. The bundled version of Plink should be used as it is

optimized for the interaction with ForEachBox, but the standard version works as

well.

All settings of a job definition can be saved to a project file and restored later.

These files will have the file extension .FEB but are simple text files. The content

can be viewed or opened with a text editor. ForEachBox allows opening a project

on the command line. The project file is the first and only parameter without any

switches.

2.1 Login

A username or password is only sent if a prompt is detected. For the username

these prompts are “Username:”, “login:” or “User:” and “Password:” for the

password prompt. The login is considered done if a device prompt is detected.

ForEachBox will automatically answer the SSH question if the host key of the

destination should be accepted and confirm that the key should be stored. As

Plink will output this question on its error console this text will be colored blue in

the messages log. The key is stored on the server and this message will only be

shown on the first login.

During logins a provided password is only sent twice for authentication if the

authentication fails. The first attempt is allowed to fail as an authentication

service could temporarily have a problem and refused the attempt. If the second

login attempt also fails ForEachBox assumes a problem with the login

information. To not lock the account for failed login attempts the process is

stopped and a login error reported.

ForEachBox also supports PIN/token authentication with hardware tokens. This

provides very few advantages if required for every device, but is useful if a jump

box uses this. The PIN has to be provided only once and is stored during the

program is running. The token dialog is triggered by the “PASSCODE:” prompt.

2.2 Device Prompt

ForEachBox detects and used the command prompt of the device. Commands are

sent one by one. Before a command is sent the device must be at the command

prompt. This ensures that the device is not expecting a different input and is

ready to except a command.

If the context on a device is changed the prompt changes and is appended with

information about the current context. ForEachBox cuts the prompt before some

internal delimiting characters. Everything following a “>”, “#”, “(“, “/” and “$” is

ignored.

For detecting a prompt it must be at the beginning of a line. Logging messages

generated by the device can cause the prompt to be displayed at the end of a

line. In this case the detection can fail. It is recommended to not enable

“terminal monitor” to receive these messages and to enable “logging

synchronous” on IOS to repeat the command prompt after a message. Also if the

prompt itself changes completely, the detection will not work anymore.

If the command prompt cannot be detected within the timeout interval a warning

is logged and the next command is sent “blindly” nevertheless. This is a failback

mode as there is no guarantee that a command was received and executed by

the device.

2.3 Jump Box Support

In some network environments a direct connection from the engineers PC to a

device is not supported for security reasons. The engineer first must login and

authenticate to an intermediate system. From this system the actual connection

to the intended device can be established with the SSH or Telnet program on the

intermediate system.

After the work is finished on one device, the connection to the network device is

terminated and the session continues on the intermediate system. From there a

new connection to a different network device can be opened.

This type of intermediate system will be called jump box within this document.

ForEachBox allows three device types to be used as jump boxes. The default

option “Other/Linux” can be used for all kinds of UNIX and Linux devices and

devices that are similar. “IOS” and “NXOS” allows Cisco routers and switches to

be used. Please note that NXOS does not support a non-standard port for SSH.

The command that must be started from the jump box depends on device type

and the protocol. The command can also be fully customized and supports

various placeholders. This allows starting scripts to initialize the connection or to

use further command options like the source VRF on IOS. With the Auto-Set

button the command is set accordingly to the other settings.

Reuse Connection

ForEachBox allows reusing the connection in the same way an engineer would

start a new connection from the same session on a jump box. This can speed up

the execution as the login to the jump box is required only once. It is also useful

if PIN/Token authentication is required for login.

The reuse is optional as it can cause problems, if the connection to the network

device cannot be correctly terminated. After the command script is done the

device must be in a state or context, where one “exit” command will terminate

the session. This last “exit” is implicitly sent. If a configuration was applied to a

device ForEachBox doesn’t know which commands are required to exit out the

connection. The command script must always exit out of every context. The

same problem exists, if the command script contains an additional “exit”

command which terminates the connection to the device. In this case the implicit

last “exit” command will actually terminate the session to the jump box.

Reconnect

If the connection to the jump box is lost during a job, a relogin is attempted. If

the first login to the jump box failed or the connection is terminated after

finishing the first device, no relogin is attempted and the job is aborted.

Please note, that the command prompt for the jump box and the network device

must be different. This is required to detect a failed login.

2.4 Job Results

If a job is started two messages are logged for every device. They have the

following format and are generated before a session started and after it ended.
--

 Session started for host 192.168.92.211 at 2012-11-03 19-05-05

--

After the complete job finishes or is manually stopped the following message is

logged.

--

 Processed 1 of 1 devices, 0 with errors, 1 with warnings

--

The first number is the number of devices that have been processed. If the job

was manually stopped or failed this number is lower than the second number.

The second number is the number of devices that are active in the host list. On a

test run this number is always one. The errors are devices where the connection

setup or login failed. The warnings are counted if a timeout for one command

happed or the session terminated unexpected. Check the Messages tab for more

information on error and warning events.

The text on the left to the filter box changes to a result display containing the

same numbers as in the logged message. This display is also updated while the

job is running.

Each processed host will be colored in the host list according to the result.

Successful hosts are colored green; warnings are orange and errors in red.

ForEachBox first tries to end a session by issuing an implicit “exit” command. If

the connection is still active or seems to be hung the session is terminated by

ending the Plink process. As all commands were delivered this host is considered

to be successful in this case.

The results of a job can be collected and obtained in two ways. The logging file

collects the text output and can severe as a result log. The output of a device

session will feed both the logging file and the messages tab. The second method

is the data collection which allows compiling bits of the output and saving it in

table format files.

3 Usage and settings

3.1 Button Bar

Test Button

This will run the normal job on the first active device in the host list only. The

first active device can also be set with a filter criterion.

Run Button

This will start the processing of all active devices included in the host list.

Timer Button

This will start a scheduled run. Settings can be changed under the Schedule tab.

Stop Button

This will work depending on the state or mode the program is currently active in.

If the button shows a small clock symbol this indicates a delayed interrupt.

During a running job the process stops after the current device; the current

device will be completed first. During this time the icon changes to a stop sign

and a second press will immediately interrupt the processing of the active device

and end the current job.

If the button shows a stop icon the current running activity is stopped. This

is the case in the following states.

- A job is active and the button was already pressed.

- If the scheduler has been started but no job is currently active. The

scheduler will be stopped.

- A test run is active. It will be stopped immediately.

Open Button

This opens a file open dialog to pick and load a previously saved job file.

Save Button

This saves the current settings to a previously opened or saved file. If no file has

been selected before, the Save-As file dialog will allow saving the settings to a

new file.

This stores all relevant settings of the current job to a project file. Authentication

information is only saved, if selected in the Access Tab.

Save As Button

The current settings are saved to a new file.

Logging

This is a toggle button and enables or disables the generation of logging files. It

has the same function as "Enable File Logging" in the Settings tab and is also

intended to visualize the current setting.

3.2 Job definition

The tab Job allows defining all settings for one job, like the hostnames, the

commands to execute and the device access.

The slider between the host list and command list allows adjusting the width of

the two text boxes.

3.2.1 List of hostnames

This contains the hostnames or IP addresses, where ForEachBox should process

on. Each line contains one host or device to process. Hostnames can contain

domain suffixes, but they must be resolvable to IP addresses on the local system

or the jump box.

Hosts can be disabled with prepending a “!” or “#”, which are used as remark

characters. The host list uses the following color key.

Color Usage

Black Active and not processed hosts during a run

Grey Disabled by remark character or host not matching filter

Blue Active host and host matching host filter

Green Host was finished successful

Orange Host finished with warnings, not all commands could be
delivered or the connection was disconnected

Red Connection or login failed

The host list can also contain further parameters, separated with a space

character or semicolon. These parameters can be used to define variables, which

then can be used in the macros. This allows using individual settings for each

host.

To use these parameters use the placeholder parameter and param1 to param3.

See the section Placeholders for more information on how to access and use

these parameters.

Filter Host List

This allows the list of hosts to be filtered. Only hosts that match the filter criteria

will be active and processed. Hosts, that match will be colored blue, hosts, that

don’t match will be colored grey. The number of hosts that match the current

filter is displayed right to the text box and updated while typing.

This allows to select only devices from a specific network or location or to select

the test device. The filter can contain regular expression elements like “|”, “?”,

“[1-3]” and others. An empty filter matches all devices.

Parameters can also be used for selecting devices with a filter. In this case

parameters are used as a tag. Use a parameter like “testdevice” or “backup” to

have an easy selection filter.

Find Host

Select a host in the host list and press the Find button . It will use this host as

the search term in the messages tab and jump to the first messages for this

host. If that host is in the messages more than once, the find button in the

messages tab can be used to find the other sections for this host.

3.2.2 Commands List

This contains all device specific commands to be sent to the device. Each line

contains one command that should be sent to the device. There is no syntax or

context checking done on the commands; they’re sent to the device as entered.

A final “exit” to end the session to a device is not required and could trigger a

warning message to be logged for the device. There is an implicit “exit”

command send to the device to end the session.

Don’t use the tab character to auto-complete commands. Abbreviations can be

used if they uniquely identify the command or the complete command. The

command can also include a pipe (“|”) to filter the output on the device if that

supports this.

Commands can contain placeholders and macros. To open the Command Line

Editor double click on a line or place the cursor on a line and press the button

“Edit…”. This also allows disabling a command. To insert a placeholder press the

button to get a menu with the supported placeholder. See the sections Macros

and Placeholders on how to use these tools.

CLI Type

The type of the device or the CLI type it uses can be selected here. It is used to

send specific commands to the device to initialize the session. For most device

types it will disable pagination (“more” prompt), so that all output is delivered in

one piece. The “Other/Linux” device type has no predefined command to disable

pagination. The correct command to disable it has to be added to the command

list as one of the first commands.

The option “Other/Linux” allows the command prompt to change or to access

other devices during working on one host. Usually ForEachBox expects the

prompt to begin with the hostname and end with an arrow, hash or dollar sign.

With this option enabled, only the end character is checked. This also allows

accessing other types of command line interfaces.

The option “Auto-Detect” will try to determine the actual command line type

based on the initial output the device sends.

Device Type ID String Mnemonic

ASA Type help or '?' ASA

NXOS Nexus Operating System (NX-OS) NXOS

ACE Application Control Software (ACSW) ACE

Unix/Linux Last login: Other

WLC User: WLC

IOS IOS

Cisco IOS does not have any specific string on which it can be identified. If none

of the other ID Strings matches, IOS is assumed. Please mind, that the auto

detection can fail in cases, where the ID String is misinterpreted or missing.

If the connection to the device failed the device type will be “Undef”. This is only

relevant for logging files.

3.2.3 Global Parameters

Global parameters or constants can be used in the command script using their

placeholders. They can set parameters that are processed by the job. To use

these parameters use the placeholder const1 to const4. This is an alternative to

do the changes in the command list or macro.

The label for the text box can be changed to provide a descriptive text for the

parameter in that text box.

A used case could be a static route, where the parameters could define the IP

subnet and next-hop information. See the section Placeholders for more

information on how to access these parameters.

3.3 Authentication and Access

3.3.1 Device Access

In this tab all options and information to access the device can be modified.

The section “Device Access Account” holds the login credentials and the

connection protocol for the device defined in the host list.

If a jump box is used these settings are used on the command line executed on

the jump box.

Username

Enter the username that should be used to authenticate with the device. The

username is optional and a login without a username is tried five times before

the connection attempt is considered unsuccessful.

The username is not saved to a job file by default. See Security Options for more

information.

Password

This is the password used to authenticate with the device. This field can be left

empty if the devices don’t require a password. A login attempt using the

password is tried twice only before it is considered incorrect. This should avoid

the account to become locked because of too many failed attempts.

The password is not saved to a job file by default. See Security Options for more

information.

Enable

This is the enable password for the device. If left empty ForEachBox will not

attempt to enter privileged mode. If it’s set it will try to get into privilege level

15. If the user account already has level 15 access, there is no change in

providing the enable password.

Some platforms don’t support an enable password, like Nexus switches, where

this command would be rejected. Only IOS and ASA device types will use this

setting, it is ignored on other device types.

The enable password is not saved in the project or settings files by default. See

Security Options for more information.

Protocol

This allows selecting Telnet, SSH version 1 and 2 from the list. If “SSH” is

selected, both versions are allowed and negotiated by Plink at connection setup.

Changing the protocol for the device access will also change the command line

for the jump box. This will replace the terms “ssh” and “telnet” with the new

selection. Further adjustments to the command line might be required.

Port

Enter the TCP port where the connection should be made. If the port is left

empty, Plink will use port 22 for SSH and 23 for Telnet.

3.3.2 Jump Box Access

The section “Jump Box Access” holds all information for an intermediate system,

which must be access first. This system then allows establishing a connection to

the device in the host list.

The account and connection information can be set independently from the

device access. The use is exactly as described in the previous section.

Enable Jump Box

The jump box feature is only used if the check box “Enable Jump Box” is

selected. If the box is not selected, a direct connection with Plink to the host is

established. All settings in this section are without effect in this case.

Reuse Jump Box Connection

This enables the reuse of the first connection to the jump box. After one device is

finished a new connection is started from the same session. This can speed up

the progress as only one login to the jump box is required.

If this option is disabled, which is the default, a new connection is started for

every device and the connection to the jump box is terminated after the device is

finished.

Hostname

This sets the hostname, FQDN or IP address of the jump box to be used for this

job.

CLI Type

This sets the type of the jump box, which is required for the login process and

generation of the appropriate command line. Only “IOS”, “NXOS” and

“Other/Linux” device types are supported. The initialization commands are also

used for the jump server.

Command

This is the command that is executed on the jump box to start a connection to

the device. This can be customized and also supports placeholders.

Locate the cursor at the position, where to add a placeholder and press the

button to get a list of supported placeholders. The list of placeholders differs

from the command script. Only placeholders, that contain valid information

before a connection are available. Additionally some placeholder containing

authentication and connection information are supported. See the section

Placeholder for more information.

Use the button “Auto Set” to set or reset the command to match the selection of

the jump box device type and the end device connection protocol.

3.3.3 Security Options

The security section contains to settings on where to save authentication

information. By default both options are disabled and no sensitive information is

saved to the personal settings file or a job definition file.

The behaviour changes if a job definition file is opened or the current settings are

saved to a file. This is done to keep personal settings like the username separate

from opened project files, which might use different login information.

If the program is started, the personal settings file is read and these settings are

applied. These settings are also set as the default login parameters which are

applied, if a new project is started with the “New” button. If the program is

closed and the current settings are not saved to a file (answering the dialog with

“No”) they are saved as the new defaults in the personal settings file and

restored on the next start. In this case a project file was never opened or saved.

This behaviour is also active, if a project file is opened and then the “New” button

is used to revert back to default settings.

If a project file is opened all settings are first reverted to the default settings and

then all settings from the project file are applied. If authentication information is

saved in that file, these are also applied. If not, the defaults from the personal

settings are kept. If login information is changed, these new settings can only be

saved to the current job definition file or a new file. If the program is closed login

information are not saved to the personal settings file, only to the job file. The

dialog asking to save the settings will only allow saving the settings to the

current project file.

Save login information to default preference file

This allows the account information to be saved to the personal preference file. If

a project file is opened, this option is disabled as it cannot be used in this case.

This setting is saved to the personal settings file, the default is off.

Save login information to this project settings file

This allows the account information to be saved to the current job definition file.

This is also the setting used if the current settings are saved to a new project

file. This setting is only saved to a project file, not the personal settings and the

default is off.

Saving information

Activating one of the two options will save the username, password, enable

secret and the key file name for both the device and the jump box. A PIN for a

token is not saved to any project file.

Except the username all information are save in an obfuscated format. It is

currently not using a strong encryption. The passwords and project files are

transferable between computers and not bound to an external key or master

password. It is intended to not save the password in clear text in a project file

but is certainly not uncrackable.

Key file

Beginning with 15.0 Cisco routers support public key authentication. Provide the

private key here to login to a device where the public key has been provided to.

This can also work in conjunction with Putty’s Pageant which provides key

management. If the field is left empty this option is not used.

3.4 Messages logging

The tab Messages will collect various messages from different sources, apply a

colour key and append them to the text area. Newest messages are added to the

bottom.

Internally the messages logging uses a fast buffer. This allows it to fetch all

messages from the Plink program without delay. It also avoids problems with

collisions while different components send messages to this buffer. The buffer is

independently (and slower) synchronized with the messages log. Applying filters

and highlights will pull the information in the buffer again and apply the new

rules while filling the messages box.

By default all information is sent to the messages log, which can at a certain

point cause the program to run out of memory. See the Limits section for further

solutions how to remedy this.

Color key

The following colour key is used. This can also be seen while hovering the mouse

over the filter selection list.

Color Usage

Black All information sent by the device, like login and
command results

Grey Status information from ForEachBox

Blue Output from the Plink application, like also be errors

and messages during the login

Red Error messages generated by ForEachBox. These are
about syntax errors or program errors.

Button Clear

This clears all messages from the box and frees the memory. It also clears the

internal buffer.

If the mouse is hovered over the button, the tool tip shows the current size of

the text information in the message box. A saved log file will have the same file

size. This can be used as an indicator for the memory consumption.

Button Save

This will save the content of the messages box to a file. If filters are applied, only

the messages conforming to the filter will be saved to the file.

If the filename has the extention “.html” it will be saved in HTML format and the

color key of the messages is preserved.

Filter

This will apply a filter to the messages box and show only messages that match

the filter. The messages are obtained from the internal buffer. Applying a filter

does not remove messages from the buffer.

If the selected filter is “All messages” any result from the device is added to the

log. This is the default setting.

Any other filter will change the process, that normal command output is NOT

added to the internal buffer. Messages generated during the login phase and

other program messages are still added to the buffer. This also does not change

anything for the device file log, where messages and output is saved

independently. These settings are useful if there is a lot of output generated and

this causes the application to run out of memory. Keep in mind that this filters

the messages while they enter the buffer, if they’re already in the buffer, they will

remain there.

The filter “No device output” will show all messages, except any device output.

All other filters will only show one type of message.

This setting is also saved to a project file and the personal settings file.

Autoscroll

If selected, the log will always scroll to the last message that was added to the

box. If unselected, the current scroll position will be kept.

Highlight

If ticked, the device output will be parsed for both syntax errors, which are lines

starting with a “%” and lines containing an executed command. The following

colour key will be applied.

Color Usage

Blue Executed commands, which includes configuration
commands

Red Syntax errors reported by the device

This colour coding will also be saved to a HTML file. Filters won’t apply to this;

the output is still considered device output.

Find

This allows searching the messages for the entered text. It will start searching

from the current cursor position in the messages box. If Autoscroll is active, this

is always the last position and the search will start at the beginning. The starting

position can be chosen by selecting a bit of text.

Detach

Press the Detach button to detach the Messages tab from the ForEachBox

window and opening as a separate window. This allows checking the progress in

Job tab and Messages at the same time. Closing the Messages windows will

reattach it as the Messages tab again.

3.5 Settings

The settings tab allows setting options for the Plink program, for the data

collection and file logging.

3.5.1 Plink Options

Under the settings tab the filename for the Plink application can be changed. The

default does not contain any directory information. In this case ForEachBox tries

to find the application in the current directory. If the file can’t be found, an error

message will be raised.

The parameter text allows adding further command line options for Plink. This

can be the option to use IPv6 or the Putty Pageant. Also a Putty profile name can

be applied. If options are added, the Plink syntax must remain valid. See the

Plink command line documentation for more information on the parameters.

For normal operation no further options are required except the hostname. The

option for using SSH or Telnet is automatically applied as a preceding parameter.

If the parameters field is empty, the default is to append the hostname in the

same way, as shown above. This is also the default value that is restored if the

“Reset” button is pressed.

Use Password on Command line

Using the password on the command line is a security risk, as the password has

to be included in clear text. The password can be obtained with the Windows

Task Manager or similar tools. No further parameter for Plink is required; the

correct option is prepended automatically.

This option can help to login to Linux systems or systems, that don’t use a

standard login prompt. It can also circumvent a problem with ForEachBox if Plink

runs on a Linux system.

The option is disabled by default and in this case the password is send to the

Plink tool via internal communication.

3.5.2 File Logging

Under the Settings tab options for device file logging can be found. File logging

saves all output from the device a file.

Enable File Logging

Enable or disable Device file logging. The following settings are only effective, if

File logging is enabled. This has the same function as the button “Logging” in the

button bar and changing one also changes the other.

If disabled no file is written to disk, all information and messages are stored in

the messages log under the tab “Messages” only.

Logging file

The image above shows the default settings that are also applied, if the “Reset”

button is pressed. It supports all placeholders, even with dynamic information.

There are three methods to use the log file name.

- If the filename does not contain any placeholder with dynamic information

or the hostname placeholder only one file is used. This will save all

information from every device to this one file. In this mode the log file

becomes a job log.

- As soon as the placeholder hostname is used one file for every device is

created. The distinguisher is the hostname as it is included in the filename.

In this mode all messages are written to the file, at the time they’re

generated.

- If any placeholder is used that contains dynamic information which is not

known before the login the behaviour changes. In this case the file name

cannot be built before the session and all information are stored in

memory. After the session is terminated all dynamic information are

known and the placeholder in the file name are replaced. The information

in memory is then saved to the file.

The following table shows the placeholders used and the corresponding file write

method.

Placeholders Logging method used

date, time, const,
parameter,

One log file for the whole job

date, time, const,
parameter, hostname

One log file for every device

Any other One log file for every device, saved after the session

Note, that the content of the time and date placeholder is replaced when the file

logging starts, either at the beginning of the job or the session. For the prompt

placeholder the default is #hostname#, if a prompt could not be recognised or

the session failed. If the device type could not be determined the default is

“Undef”.

The file name can also contain path delimiter. This allows using a different folder

for every day or every hostname. If a folder in the path does not exist already, it

will be built. The following example would generate a logging file with the name

router_192.168.0.1_config.txt in the folder 2012-01-01\IOS\.

%date%\%devicetype%\%prompt%_%hostname%_config.txt

Some characters in hostname, date or time that are not allowed in filenames are

replaced. Columns in IPv6 addresses are replaced with underscores and time

formats will use a hyphen as separator.

The “Reset” button will replace the current file name with

logfile_%hostname%_%date%.txt.

Directory

This sets the base directory for all device log files and also the data collection

file. The directory name cannot contain placeholders.

The directory must also exist; new directories are not generated. Use the browse

button to select a folder on the system. If the directory is left empty, the current

directory will be used. A path separator between the directory and the file name

is automatically added.

Existing file policy

If a log file that should be used already exists this selects the behaviour for this

case. It has three options, “Overwrite”, “Append” and “Uniquify”, which is the

default.

“Overwrite” will replace the existing file with the new log information. The old

information is deleted without confirmation.

“Append” allows saving the new information at the end of the existing file. This

can be used as a change log for one device.

“Uniguify” will append an additional number to the filename to have unique file

name. The format for this is filename-000.ext where 000 is an ascending number

starting with 1. If all 999 files already exist, the last file will be used and

overwritten.

Log only command output

If this option is enabled, the logging starts after the login process and after the

initialization commands have been sent. This allows filtering out text that is not

relevant or redundant.

3.5.3 Data Collection

The data collection feature of ForEachBox is intended to collect information for all

devices of a job in one condensed file. The resulting data set is a file in text

format that can be processed with other applications or even used as data set file

for ForEachBox itself.

Data collection is enabled by the use of either the VARIABLE macro with the

collect option or with the COLLECT macro. Both will have the same result, where

the COLLECT macro allows collecting any information and the VARIABLE macro is

a convenience. If no macro triggers a data collection an output file is not

generated or nothing appended to an existing file.

Output file

The output file is mandatory, even if no data collection is used. Using the “Reset”

button will reset the filename to the default shown above. The filename supports

some placeholder, use the button to add an available one. Only placeholder

containing information that is available at the start of a job or is host

independent can be used. These are date, time and const.

The output file is a CSV file with no header line. The first column is the hostname

for the device, where the information was collected. The following columns are

filled with collected information. Every use of a macro will result in an additional

column.

Field separator

This selects the character that is inserted between every data field and defines

the file format.

The comma separator is RFC compliant but might not supported with all

applications.

The semicolon can be used in cases where the decimal delimiter is the comma

and collides with the comma as a separator. This is also the correct separator to

use if the file should be used as dataset input for another ForEachBox job.

The third option is the tabulator character. The resulting file is a tabulator

separated value file (TSV). This type can also be used as dataset input for

ForEachBox.

The line separator for the file is the character that is default for the operating

system on which ForEachBox runs. For Windows this is CRLF, for Linux, UNIX and

OSX it is LF.

3.6 Dataset

The dataset feature allows using external data sources in a job file. This can

contain further change information or dynamic job information. It can also be

used for translation or lookup purposes. The data source can be configured under

the Dataset tab.

The dataset is a table of data and is organized in rows containing a data record

and columns containing a data fields. It can be source either from an external file

or from the text box "Data and Lookup table". They are mutually exclusive and

the selection, which source is used can be set with the check box “Enable and

use external data file”.

If an external source is used by ticking the box an external file is mandatory. Use

the Browse button to select a local file. The content of the text box at the top of

the panel is ignored in this case.

Data Format

Both sources use the same data formatting and the content of the text box can

be copied from and to a file. Columns or data fields are separated by a semicolon

or tabulator character. This allows including element lists in a data field, as the

separator for elements is a comma.

The line or data record separator can be any common line separator.

The dataset doesn’t need to have a header and if it has one it will processed as a

regular record.

Lookup

The first column is used by the QUERY macro for looking up the expression. Both

the expression and the data field to be compared have any trailing or following

white space removed. The comparison is case-sensitive unless the macro option

for a case-insensitive lookup is selected.

The search starts at the first row and continues downwards. If the expression

matches a data field the search is aborted.

The first nine columns of the row where the match was found are copied to the

variables dataset1 to dataset9. All columns except the first are also copied to the

variable dataset and the previous field separators are replaced with a comma.

The variable placeholder dataset can be used in the LOOP macro as the list of

elements. All data fields have any trailing or following white space removed.

3.7 Scheduler

The Schedule tab settings for a scheduler can be set. This allows to run the job

at a later time and to start a job repetitively.

Start Time

The start time section allows starting the job now, at a specific time or after a

wait time. The selection “Start in” sets the wait time in minutes from the

moment the Scheduler is started. The selection “Start at” allows setting an

absolute time. The hour must be entered in 24 hour format.

Interval

The interval sets the time between each run. The default “Run Once” will stop the

Scheduler after the first run.

“Every” allows defining the time between runs in minutes. The time is calculated

from the start of the previous job, not when the job finishes. The minimum is

one minute.

The Hourly, Daily and Weekly selection runs the job at predefined times. The

exact time depends on the start time of the job.

Repetitions

This setting is valid for every type of interval except “Once”. This sets the

repetitions for the scheduler after which the scheduler ends. If the field is empty,

the Scheduler is never stopped and runs continuesly. In this case the Scheduler

must be manually stopped.

Start and Stop

Press the “Timer” button in button bar to start the scheduler. Additional

messages are added to the log. While the Scheduler is active jobs can’t be

started manually using the “Test” or “Run” button.

To stop the Scheduler manually, press the “Stop” Button. If the Scheduler is not

running an active job the Scheduler is stopped and disabled. If the Scheduler has

started a job, the behaviour is the same as if the job was started manually. The

first press of the stop button will first finish the current device and the second

press will interrupt the session. The Scheduler is stopped in every case.

3.8 Keyboard shortcuts

ForEachBox supports global keyboard shortcuts for common tasks.

Key stroke Action or Command

Alt-J, Alt-Shift-J Selects the Job tab, Shift sets focus to parameter 1

Alt-A, Alt-Shift-A Selects the Account tab, Shift sets focus to Username

Alt-S, Alt-Shift-S Selects the Settings tab, Shift sets focus to Plink binary

Alt-M Selects the Messages tab

Alt-D Selects the Dataset tab

Alt-R Runs the job

Alt-X Stops the current job

Ctrl-S Saves the current project file

F12 Saves the current project settings to a new file

The three keyboard keystrokes using Alt-Shift allow activating a known text field.

This can be used to control ForEachBox with a tool that sends key strokes. For

Example the password storage KeePass could fill in the passwords from the

internal database.

3.9 Error Handling

During the definition of a job or before saving a project file no error and syntax

checking is done. The exception is the Macro Editor that checks the settings

before the dialog is closed.

If one of the buttons Test, Run or Timer is pressed all required settings are

verified. Files like the Plink executive and an external data source must be found

at the indicated location. Some text fields cannot be empty like the Jump Host

hostname. If an error is found, that prevents a successful process an error

message is shown with information about the problem. Also it will switch to the

tab containing the error. The text field in question gets a red background.

The verification stops at the first error that is found and will not find all errors

which are preventing the start. If the problem is fixed and the job started again it

will show the next problem if one is found.

The macro expressions are not checked at this time. Also there is no device

specific syntax check for the command. Errors for macros are logging to the

messages log as program errors (red) and incorrect commands are rejected by

the device itself.

4 Automation

4.1 Placeholder

Placeholder can be used in the command script to be replaced with a dynamic

content. The behaviour has changed in ForEachBox 2.0 and is basically reverse.

Previously the REPLACE macro had to be used to replace placeholder for one

command. Beginning with version 2.0 all placeholder are replaced by default.

This can be disabled with the NO_REPLACE macro per command.

Placeholder Content Modifier

hostname Hostname or IP address from host list None

prompt The prompt of the device without a delimiting
character (#>$/)

Default: #hostname#

None

devicetype The selected or detected device type of the
following:

IOS, ASA, NXOS, ACE, Other, WLC, Undef

CLI Type selection

time The current time at the execution of the
command in the format
HH-mm-ss

time-h The current hour, format HH None

time-m The current minute, format mm None

time-s The current second, format ss None

date The current date at the execution of the
command in the format
yyyy-MM-dd

None

date-y The current year, format yyyy None

date-yy The current year, format yy None

date-m The current month, format MM None

date-d The current day, format dd None

const

const1, ..
const4

One of the four corresponding parameters from
the job description.

const is an equivalent to const1

Default: empty string

Job parameters

Static value

parameter

param1, ..
param3

Parameters from the host list.

parameter contains all in format they appear

param1 to param3 contain the corresponding

parameter from the list.

Default: empty string

Host parameters

Static value

variable

variable1 ..
variable5

These variables can be used and set in a
command script.

variable is an equivalent to variable1

Default: first five host parameters or an empty
string

Macro VARIABLE

loopvar One of the elements of the LOOP macro. The
variable changes on each iteration.

Default: empty string if used outside a loop

Macro LOOP

loopcount The number of the current iteration, starting with
1, the content is not cleared after the loop ends.

Default: “0”

Macro LOOP

expect The text, that matched the last EXPECT macro.

Default: empty string

Macro EXPECT

dataset

dataset0 ..

dataset9

The result of the last query, where the first 9
data fields are copied to the corresponding
variable dataset0 to dataset9.

dataset0 contains the text used for the query

dataset contains all data fields separated by a

comma

Default: empty string

Macro QUERY

Additionally the following placeholders are supported in the jump box command

line.

Placeholder Content

protocol Contains either “ssh” or “telnet” depending on the selected device
access protocol.

port The access protocol port number. This will also contain the port if the
standard port for the protocol is used.

username The username to be used for the authentication to the device.

password

enable

The password or enable secret to be used for device authentication.
Please note, that these are sent in clear text and could be saved to a
logging file.

The placeholder can be used in the following places.

Object Remark

Command script All placeholders are supported

Logging file All placeholders are supported, although some might still
contain empty strings, as they were not initialized during the
job.

Data collection file Only static placeholder are available

Jump box command line Only static placeholder are available and the placeholder
from the above table.

Macros The following macros support the use of placeholder.

- LOOP macro to be used for the parameter list
- CONDITION macro for string comparison
- EXPECT macro for match expression
- COLLECT macro to collect dynamic information
- QUERY macro to query dynamic information
- EDIT macro for the source text

In most places placeholder can be easily inserted with the button. Place the

cursor at the position in the text where the placeholder should be inserted. Press

the button and select the placeholder from the menu.

Placeholders are used with the name of the placeholder surrounded by the per

cent sign “%”, e.g. %hostname%.

Placeholder, that are unknown are left unmodified, all other known placeholder

that are not valid in the current context are removed.

4.2 Command Macros

ForEachBox supports Command Macros, which allow commands to be sent

conditionally, filled with dynamic information and to collect information. They are

prepended to each command and applied to only the following command. The

macros can change the operation prior, during or after the command is send and

executed by the device.

Each macro can only be applied once to a command but any combination can be

used. Every macro works independent of other macros. Internally they’re process

one by one where the result of one can provide information for the next.

Macros have their own syntax, but are expressed as simple text. They can be

edited, copied or deleted directly in the command box. Macros can be created

and edited with the “Command Line Editor”. Select a command by placing the

cursor on it and press the button “Edit...” Only one command at a time can be

edited and if more lines are selected, the first selected line will be edited.

Alternatively double click somewhere in one command will also open the editor.

Select a tab to enable a macro or modified its parameters. Some macros share a

tab. Every macro can be enabled with the corresponding toggle button. This

enables all other options for this macro. Tabs where a macro has been enabled

change the color to blue and tabs where missing or incorrect values are found

turn the color to red.

A red text field as in the example above indicates a missing or wrong value for

this parameter. These must be corrected to close the editor. All macros have a

short help in their dialog and some text fields also show a tooltip, if hovered with

the mouse.

The Device Command Line allows editing the command in the editor and to insert

placeholder.

The box “Enable” allows disabling the whole command line with macros. The

default is enabled.

All settings are verified if a different tab is selected or the OK button is pressed.

The dialog cannot be closed if errors are found. The Cancel button disposes all

changes and settings, even if errors exist. The close icon in the title bar is

equivalent to the OK button.

4.2.1 CONDITION macro

This macro is located in the Condition tab and always evaluated first. It checks a

value or condition and if the result is true, the command is send to the device. If

the condition is not true the command is not send and no other macro is

executed. The only exception is a LOOP macro end marker, which starts the next

iteration.

The following comparison options can be selected.

Option Value Description

Expect matched None A previous EXPECT macro matched one of the defined
words

Expect match equals Text or
variable

Compares the expect variable with the entered text

or variable name. This can be used to check which of
the defined words for the EXPECT macro matched.

Variable 1 equals Text or
variable

Compares the content of the first variable
(variable1) with the entered text or variable name

Variable 1 contains Text or
variable

Checks if the entered text or variable is part of the
first variable (variable1)

Variable No. is empty Number Checks if the variable with the entered number

contains no data. The number can range from 1 to 5
and corresponds with the variable number to be
checked.

Constant 1 equals Text or
variable

Compares the content of the first global parameter
(const1) with the entered text or variable name.

Device type equals Text Compares the selected or detected device type to the
entered text. Valid choices are IOS, ASA, NXOS, ACE,
WLC and Other.

DataSet No. was
found

Number Checks if the last QUERY macro contained the
expected number of data fields. Data fields can
contain an empty string on this check to be valid.

The number is the number of data fields that are
valid and can range from 1 to 9. Use the number 0 to
check if the query was successful.

DataSet No. is empty Number Checks if the dataset variable is empty The number

can range from 1 to 9 and corresponds with the
dataset number to be checked.

Previous result None This check will have the same result as the previous
conditional send and is useful to send more
commands with one check, or to reverse the previous
check.

The use of this option will not change the result for
following uses. The result is always that one retrieved

by another option.

All text comparisons are case sensitive. If the text contains a variable name this

is replace with the dynamic content of the variable. The text field cannot be

empty.

The “Not” toggle button allows to invert the result of the defined condition. If a

variable is checked for emptiness the NOT option changes this check to ensure,

that the variable is NOT empty.

4.2.2 EXPECT macro

The EXPECT macro compares all the output of a command with a search pattern.

This pattern can be a simple word that should be included or even a regular

expression. The interactive option allows answering interactive prompts and

combined with the CONDITION macro even to find the correct answer.

If the interactive box is not selected, the macro parses the command output after

the device has returned to the command prompt. The output length is limited to

the first 100 kByte. This allows checking if a specific string was included in the

output, like the switch model in the above example or a software version. If the

interactive box is selected the output from the device is checked after each

character. The expression in this case must be found in the current line of output,

which should be the interactive prompt. If the expression can be found, the

program continues with the next command. If the expression could not be found,

the program waits until the timeout expires and then considers a failed match.

The expression can contain any alphanumerical character and many symbols. Not

allowed are semicolons and curly brackets. All comparisons are case sensitive.

The expression can also be a selection of possible words or alternatives which are

separated by the pipe symbol. This could be a list like the following:

 OK|denied|not found

 Remote host|source filename

If one of the words can be found, the macro considers this a match. The word

that caused the match is copied to the placeholder expect and can be used in

later commands.

The expression can also be a regular expression and actually all expressions are

matched against the output as a regular expression. The expression is

surrounded by parenthesis to get the matching text for the placeholder. The

internally used expression is "(expression)". All regular expression tools are

supported except curly brackets. If there’s syntax error in the regular expression

the text field is marked red. A typical example for a regular expression would be:

[pP]asswort or username|login.

If the intended expression contains characters that are also used as special

characters in regular expressions, they must be escaped. The following meta

characters must be prepended with the back slash (“\”) character to be used

literally.

 [] () { } | ? + - * ^ $ \ .

The result if the macro was successful or not is saved into an internal variable

which is keep for the device session and reset only by a further use of the

EXPECT macro. This result can be used in the CONDITION macro with the option

“Expect matched”. If the match was not successful, the expect placeholder

contains an empty text. The default for the result after starting on a new device

is “not matched”.

4.2.3 VARIABLE macro

The VARIABLE macro allows obtaining information from the command output and

applying it to one of the variables. The information can be used on following

commands with a placeholder. Additionally the information can be used as a field

in the data collection.

The VARIABLE macro can set one variable per command line. Select the target

variable form the list, the variables variable1 to variable5 are supported. If the

command results no or too few output, the variable is filled with an empty text.

The macro uses three modes to obtain information from the command output.

Sequence mode

In Sequence mode the intended information is found at a fixed position. The first

text field is the position of the word in the output. To deal with line breaks and

their unpredictability the word count is continued on the next line as it would be

a long sequence of words. Up to 1000 words are copied to this list.

The field “items” contains the number of words to use including the first word.

The words are separated by white spaces. This is an optional parameter and

defaults to 1 item or word.

The “after” field allows defining a match pattern that must be found first. The

word position is counted starting from this expression. This would allow looking

for the text “Version” and using two words after this which contains the actual

version number.

Table column

This mode can be used if the command returns output in table format. It selects

words in a column of the table. Any row is considered an element and all

elements are separated by commas. This allows it to use the elements with the

LOOP macro.

The first text field is the column of the table. As every line of text or row is a

sequence of words this is actually the position of the word in that line. If previous

columns contain white spaces, words can vary in position and the word is not

always picked from the correct column.

The second text field “rows” is optional and contains the first row that should be

used. This allows table headers to be skipped. The default is 1, which will include

all rows. The maximum value is 1000.

The third text field is the number or rows to be used for the elements. If it is a

positive number this is the last row that should be included. If it is a negative

number this will skip the last rows from the output which allows a summary row

to be omitted. If the field is empty all lines are included. If this parameter results

in a row number smaller than the starting row the result is empty. The maximum

value is between -1000 and +1000.

The forth text field “items” is the number of words that the column contains.

Single words are separated by a white space. This also allows including two

columns into one element. This field is optional and if empty the default is 1

word.

Table Row

This mode is similar to the column mode but selects elements in rows. The Row

mode uses commas as separators between elements and the target variable can

be used for the LOOP macro as the element list. The sequence mode in contrast

uses the white space as the element delimiter.

The first text field contains the number of the row where the elements should be

copied from. This field is mandatory and must contain a number between 1 and

1000.

The second text field “columns” contains the first word in the row. This

parameter is optional and the default is the first column.

The third text field is the number of words or columns to be used for the

elements. If it is a positive number this is the last column that should be

included. If it is a negative number this will skip the last columns from the

output. If the field is empty all words are included. If this parameter results in a

column number smaller than the starting column the result is empty.

Data collection

If the checkbox “Data collection” is ticked, the content of the variable will be

used for data collection and added to the device’s data set as an additional data

field. This is a shortcut for using the COLLECT macro. See Data Collection for

more information.

4.2.4 QUERY macro

The QUERY macro allows to lookup a text expression in a dataset. If the

expression was found in the first column in the dataset the first 9 data fields are

copied into the variable dataset1 to dataset9. It is executed before the command

is sent.

The expression that will be queried to the data set can contain all supported

placeholder and they can be added using the button . The expression can also

contain any other text or as the example above a mix of placeholder and text.

The resulting expression is matched against the dataset and the corresponding

data fields are loaded into the variables. If the expression cannot be found, all

variables will be empty.

The text field for the expression cannot be empty. A query with an empty

placeholder will fail.

The check box “Ignore Case” enables a case-insensitive lookup. The default is off

and lookups are done case-sensitive.

The query is done before the command line is sent to the device. The placeholder

dataset1 to dataset9 can be used in the command line and are replaced with

information from the latest query.

The CONDITION macro runs prior to the query and the options for checking a

data set do refer to a query from a previous query. If the result of the

CONDITION macro is to not send the command, a new QUERY macro will not be

executed. This allows running the query only if another condition matches.

The QUERY macro allows loading host parameters from an external source. This

can for example be a list of asset numbers to be applied. It can also be used for

a parameter translation, e.g. translating from a VLAN number to a corresponding

IP address.

See the section Dataset for more information on the format of the database.

4.2.5 COLLECT macro

The COLLECT macro allows storing dynamic information of a device into a text

file. This data collection file is in comma separated value (CSV) format and can

be used externally. It can be found under the Datasets tab. It is executed after

the command was sent.

The information that will be stored to the data collection file can contain all

supported placeholder and they can be added using the button . The

information can also be a descriptive text to provide more information for the

following data field.

The data collection file will contain one line or data record for every device in the

host list that was processed. The first column contains the hostname or IP

address as it appears in the host list. All following data fields or columns contain

the information of one execution of the COLLECT macro. If the information does

not contain any text, the data field will also be empty. This ensures that every

device has the same number of data fields. The separator for data fields can be

selected in the Settings tab.

A semicolon is not supported in the text field. But it can be included in the

dynamically inserted information from the placeholder. It is possible to insert

comma character into the information to add more than one data field with one

macro execution. This will only work if the selected file format separator is the

comma. If the selected file format separator is a semicolon the information will

not be interpreted as a separate data field.

See section Data Collection for more information to set the data collection file

and the file format.

4.2.6 REPLACE macro

This macro has changed with ForEachBox 2.0. Beginning with this version all

placeholders are replaced by default. The REPLACE macro disables this as the

only option that can be enabled is “No Replace”. This allows using placeholder in

a script that should not be replaced or collide with one of the internal placeholder

names.

4.2.7 LOOP macro

The LOOP macro allows executing a set of commands repetitively with a

changing variable in each repetition.

Loop start and end

The LOOP macro consists of two sub macros, LOOP_START and LOOP_END which

can be activated with one or the two buttons “Start Loop” and “End Loop”. Both

are mutually exclusive.

The LOOP_START macro initializes the iteration. First the command of this line is

sent to the device. After this it sets the list of elements which will be used, where

number of elements defines the number of iterations. It also stores the start of

the loop or the command to which it will jump back for each repetition. This will

be the command following the LOOP_START macro.

The second option is the LOOP_END macro. A command line with this macro first

sends the command to the device. After this it will set the next element from the

list and jumps back to the start of the loop. If no further parameter is left in the

list, it will continue with the next command after the End Loop macro, effectively

leaving the loop.

If a new loop is started before the first one terminates, the second one becomes

the active one and the first one is abandoned. There is no mechanism for nested

loops. If the LOOP_END macro is missing, the loop runs to the end of the

command script. After this it will jump to the beginning of the repetition block,

just as the last line of the command script contained a LOOP_END marker.

Number list

The first method to define an element list is a list of numbers. In this mode the

first and last number is provided. Both numbers must be positive integers and all

possible values between both including the start and end number are included in

the list.

The step and digit text fields are optional and default to 1. The step parameter

defines the increment after each number. A value of 2 generates every second

number. The digit parameter defines the minimum length of the number and

preceding digits are filled with a “0”.

The following example will count from 1 to ten in increments of 2 and the

numbers are 3 digits long. The resulting list will contain the numbers 001, 003,

005, 007 and 009.

Value List

The second method is a list of values. In this mode all elements are provided as

single values separated by a comma character.

The text field can also contain placeholders which are replaced with the

corresponding dynamic information. This is shown in the first screenshot in this

section. The information can also be obtained from the device command. It

allows loading variables with the QUERY of VARIABLE macro and using the new

data as the parameter list. This works because the command is sent first and the

list of elements is built later.

The following example will use an element list of VRF names.

Variables and Placeholder

The inner area of the loop is executed once for each element in the element list.

The current element can be accessed with the placeholder loopvar. The element

will not contain trailing or following white spaces.

A second variable is the loopcount which starts at 1 for the first iteration and is

incremented by one on each repetition. This variable is only reset on the start of

a loop and holds the last value even after the loop ended.

4.2.8 EDIT macro

The EDIT macro allows typical string operations to be applied to a source text.

The result is applied to one of the variable placeholder. It is executed after the

command was sent. The macro can be found under the Replace tab.

The source text is any non-empty text, where the operation is applied to. It can

contain a mix of placeholder and normal text. This also allows applying a new

text to a variable. Curly brackets and semicolons are not supported but commas

can be used.

Two modes of operation are supported. The substring mode obtains a range of

characters from the source text. The replace mode will substitute a part of the

text with a new text.

The result of the operation is applied to the variable number that is selected from

the list. As this macro is executed after the command was sent the variable can

be used with placeholder in the next command. As the COLLECT macro runs after

this macro it can be used to modify results from the VARIABLE macro. See the

Macro Flow Chart for more information.

Substring mode

This mode uses two numbers as parameters, of which only the first is mandatory.

Both can be a positive or negative integer value, ranging from -100 to +100.

The first value sets the start value of the substring. A positive value sets the first

character to copy, where 1 is the first. If the number is higher than the length of

the text an empty text is returned. A negative value sets the position from the

end of the text, where the number indicates the characters to copy from the end.

A zero value will return an empty text.

The second parameter defines the last character of the substring. If it is empty or

zero the last character is set to the end of the text, copying the rest of the text.

A positive number sets the number of characters counted from the start of the

substring. A negative value sets the position from the end of the text, where the

number indicates the number of characters to omit. If the second position is

smaller than the start position an empty string is returned.

Replace mode

This mode used two text parameters, of which the first cannot be empty. Both

can contain placeholder, but they are not substituted with the content of the

placeholder. Regular expressions, curly brackets, semicolon and commas are not

supported.

The first parameter is the text that should be replaced. Every occurrence of this

text is replaced.

The second parameter is the new text that replaces every occurrence of the first

parameter. If it is empty the text is effectively deleted.

4.2.9 TIMEMOUT macro

The TIMEOUT macro changes the time ForEachBox waits for the device to return

to the command prompt. By default ForEachBox will wait for 30 seconds for a

command to complete. It can be found under the Timing tab.

The timeout value is entered in seconds and can be any number from 0 to 9999

seconds. The text field cannot be empty. The timeout is only valid for the

command where the macro is used.

This can be used for example for an image download which can take longer to

complete.

4.2.10 WAIT macro

The WAIT macro sets a delay that is applied after executing the command.

This can be useful if the device needs some time to apply a change, for example

shutting down an interface, wait 5 seconds and activate the interface again.

The delay is also applied if no device command is present.

4.2.11 Macro Flow Chart

The chart shows the processing for one command line. The macros are executed

in the order shown. If a macro is not present the block is skipped with the

defaults applied or no action taken.

Command line

Macro
YesNo

true

yes

false

SENDIF macro

Next command

Replace
placeholder?

QUERY macro

Condition

Send
Command

LOOP End
macro

Jump to LOOP
start

no

VARIABLE
macro

EXPECT macro

COLLECT
macro

WAIT macro

LOOP macro
initialize

Replace
placeholder

Send
Command

EDIT macro

4.3 Command Syntax

A command line can contain a macro expression and a device command. An

exclamation mark followed by an opening curly bracket at the beginning of a

command line indicates a macro. The macro expression ends at the first closing

curly bracket. Everything following the closing curly bracket is separated and

process as the device command. The device command is send unmodified with

the exception of substituting the placeholder. A command line has the following

syntax.

!{macro_expression} device_command

The white space after the closing bracket is added for better readability and

removed from the command if present.

If a command line with a macro contains no device command only a line feed

(equivalent to an enter key) is send to the device.

A command line starting with “!!{“ is considered a disabled line and is no further

processed. This also applies to the device command.

Macro Syntax

A macro expression contains one or more macros. Every type of macro can be

used only once in one command. If a macro is found more than once the setting

of the last occurrence is used.

Single macros are separated by semicolons. This is the reason, why semicolons

are not supported as parameters for macros. The position in the expression is

not relevant.

The following is an example for a macro expression using the CONDITION,

EXPECT, QUERY, TIMEOUT and WAIT macro.

!{S;X=OK;V1=1,;Di=%time%;T=10;W=2;C=%date%}

Macros are abbreviated by an uppercase letter, followed by options for this macro

and the equal sign to separate the parameter. The parameter is terminated by

another semicolon or the closing bracket.

There is a strict syntax check while parsing the expression. If a section doesn’t

match a known macro it is dropped. If the format for a macro causes an error

while parsing, the macro will be disabled or a default value applied. If a

numerical value is out of the allowed range, it will be bounce into the range.

Errors occurring while decoding a macro are logged as program errors with the

ID “MACRO_DECODE”.

CONDITION macro, “S”

 S[n][t|p|c|v|V|x|d|D][=<string|integer>]

 Sn NOT option, must be first

 S Option “Expect matched”, none of the following options

 St=<string> Option “Device type equals”, string can be IOS, ASA,

NXOS, ACE, WLC and Other

 Sp Option "Previous result"

 Sc=<string> Option “Constant 1 equals",

 Sv=<string> Option "Variable 1 equals"

 SC=<string> Option “Variable 1 contains”

 SV=<integer> Option “Variable No. is empty”, range 1 to 5

 Sx=<string> Option "Expect match equals"

 Sd=<integer> Option "DataSet No. was found", range 0 to 9

 SD=<integer> Option "DataSet No. is empty", range 0 to 9

The integer number contains the number of the variable that should be checked.

Numbers are bounced into the range on during the execution.

The string is the text the option should compare the variable to. It cannot be

empty.

EXPECT macro, “X”

 X[i]=<string>

 Xi interactive option, must be first

 X=<string> the string is the regular expression that should be

checked for

QUERY macro, "D"

 D[i]=<string>

 D=<string> the string is the expression that should be looked up in

the dataset

 Di case-insensitive query

COLLECT macro, "C"

 C=<string> the string is the information that should be stored to

the data collection file

REPLACE macro, "R"

 Rn Option to not replace placeholder in the device

command

VARIABLE macro, “V”

 V[1-5][c]=[c|r]<parameter>

 V1, … V5 the number of the variable the information should be

copied to, must be first. If the number is omitted,

defaults to variable 1 for compatibility with version 1.0,

 Vc collect option to store the value to the data collection

file

 V=<start>,[<count>][,<string>]

 Sequence mode, where start is the number of the first

word to copy, count the number of words and string the

expression to find and count of from.

 V=c<column>,[<startrow>],[<endrow>],[<count>]

 Column mode, where column is the number of the

column starting with 1 for the first, startrow is the

number of the first row, a positive endrow is the

number of last rows, a negative endrow is the number

of rows from the end to skip, count is the number of

colums (words) to copy.

 V=r<row>,[<column>],[<endcol>]

 Row mode, where row is the number of the row starting

with 1 for the first, column is the number of the first

column (word), endcol is the last column, if endcol is

negative it is the number of columns to skip at the end.

If endrow or endcol are positive values, they must be larger than the startrow or

column value.

EDIT macro, “E”

 E[1-5]={s|r}<parameter>

 E1, … E5 the number of the variable the information should be

copied to, must be first. If the number is omitted,

defaults to variable 1

 E=s<start>,[<count>],<string>

 Substring mode, where start is the first character to

copy, count the number of characters and string the

source text. Start is mandatory count is optional and

defaults to 0. Both can be in the range -100 to +100. If

both are lower than 1, they count from the end.

 E=r<find>,[<replace>],<string>

 Replace mode, where find is the text to be replaced,

and replace the new text replacing the old. Find cannot

be empty.

LOOP macro, “L”

 Lc=<start>-<end>,[<step>],[<digits>]

 Number mode, where start is the start number, end the

last number, step the increment and digits the number

of digits.

 Ls=<string> Value list mode, string contains the list of elements with

a comma as the element separator

 Le Mode loop end

TIMEMOUT macro, “T”

 T=<integer> timeout for a command in seconds

WAIT macro, “W”

 W=<integer> delay after the command in seconds

4.4 Script Examples

Loop and Wait

The following script will count from 1 to 10, run a show interface command and

wait a second on each repetition.

!{Lc=1-10,,}

!{W=1;Le} sh int lo0 | i errors

Save configuration

This example is also included as a project file save_all_config.feb with

ForEachBox. It will save the running configuration of various devices. The devices

can use device virtualization, like VDC on Nexus switches and contexts on ASA

firewalls and load balancers.

!{X=Nexus5} sh ver | i cisco

!{S;W=20} copy run start

!{X=Nexus7000} sh ver | i cisco

!{Sp;T=90} copy run start vdc-all

!{St=ACE} write memory all

!{St=IOS} write

!{St=ASA} changeto system

!{St=ASA} write memory all /noconfirm

For the Nexus switches a “show version” is used to get the switch information.

The EXPECT macro is used to match on a sting identifying model. On a Nexus

5000/5500 series the standard command to save the configuration is executed.

The command will wait 20 seconds for the command to complete. On a Nexus

7000 the session should be done to the admin VDC and the command will save

the configuration for all VDCs.

If the device type is indicating an ACE load balancer the session should also be

the admin context and the command will save the configuration for all contexts.

For an IOS based device the configuration is saved using the “write” command.

On an ASA firewall first the context is switch to the system context and from

there a command to save the configuration for all contexts is used.

Backup configuration

This example is also included as a project file backup_all_config.feb with

ForEachBox. It will obtain the running configuration with the command “show

run” and save the content via the logging feature to a local file.

show run

!{St=ASA} changeto system

!{Sp} sh run

On an ASA firewall it will also switch to the system context and obtain that

configuration as well. To do this only on the admin context a further check on the

device hostname or host parameter could be implemented.

The example file will save the configurations in a subfolder with the date and a

further subfolder with the device type.

Collect software version

The following script will collect the software version of an IOS device. For this it

will search for the word “Version” and pick the following text string. This value is

also saved to a data collection file. Additionally it will look up the software

version in the data set and run a command that is included as the first data field.

!{V1c=1,,Version} sh version | i IOS

!{D=%variable%} %dataset1%

Interactive prompt

The following script clears the OSPF process on an IOS device. The device will

ask for confirmation. As ForEachBox won’t detect the device prompt the

command would usually time out.

The EXPECT macro with the interactive option is used and the expected prompt is

“\[no\]:”. As the square brackets also are used for regular expressions they must

be escaped with the “\” character. As soon as the prompt is detected the next

command is executed. This will send the required “yes” to confirm the action, but

only if the previous prompt was detected.

!{Xi=\[no\]:} clear ip ospf process

!{S} yes

5 Hints and Caveats

5.1 Limits

ForEachBox is a lightweight application with low memory footprint. For holding all

dynamic information it acquires additional memory. Especially the message

logging can be quite memory intensive.

All messages are first written to a buffer, which is periodically written to the

messages box. This explains why the setting “No device output” can be switched

on and off – it reparses the information in the buffer again.

If the JAR file is started with default settings, it gets a small maximum memory

allocation. With this setting, the messages log can hold about 6 MB of text

information before the application runs out of memory. Unfortunately Java

behaves a bit unpredictable if this happens and will most probably crash sooner

or later.

An easy way to prevent this is, to disable the device output box in the messages

tab. This will also prevent the messages to be written to the internal buffer. All

messages are still written to logging files. Clearing the messages log will also

empty both log box and internal buffer.

Alternatively Java can be started with additional command line parameters that

assign more memory to the application. The ForEachBox binary file does reserve

512 MB of memory. It uses the following parameter internally.

-Xmx512m -XX:MaxPermSize=512m

At least 20 MB of text information could be logged during test before the

application slowed down considerably. An out of memory error and a crash

occurred at about 30 MB.

5.2 Known Problems

Banners

Some login banners can interfere with ForEachBox. If a device has characters in

the banner that look like a device prompt, the login will fail. Especially if a line

starts with a letter and a hash symbol follows without any white space, like the

example below. Only line B will cause problems.

banner motd ^line_A####### OK, as it is the first line

line_B###### not OK

line C##### OK as it contains a space

#####line C OK, as it doesn’t contain leading characters

^

6 Operating Systems

6.1 Linux

ForEachBox has been successfully tested with Debian 5 and Mint 14. The Java

versions used were OpenJDK 1.6.0_18 and 1.7.0_09. It seems to not work at all

with GNU Java 1.5. Other Linux distributions or editions of Java have not been

tested so far.

To install the Plink binary on Debian based systems use the command “sudo apt-

get install putty-tools”. After installation use the path “/usr/bin/plink” for the

Plink setting. Alternatively the source code available on the Putty web page can

be compiled on the local system.

If SSH is used to login to a device, Plink will use the terminal window to show the

password prompt. This can also happen, if some of the login information is

missing or wrong. No messages are displayed in ForEachBox and the login just

times out. The workaround is to provide all information required for a login and

to use the function "Send password on command line" for SSH to avoid this.

Some Messages from Plink are still send to late. Using the previously mentioned

change to the source code is not effective on all messages. This causes these

messages to be displayed and logged out of order or to be displayed when the

session to the device is terminated.

6.2 Mac OSX

ForEachBox has been tested with OSX 10.8 (Mountain Lion) with the preinstalled

Apple® Java version.

To install the required Plink binary download the PuTTY for OSX from the

following link http://www.mac-tools.org/putty-fur-mac-os-x/02/2012/ .Use the

path and binary “/Applications/PuTTY.app/Content/Resources/bin/plink“ for the

Plink setting. Please note, that the path cannot be selected form the browser as

it seems to be a hidden folder.

The binary seems to work fine with ForEachBox. All messages are received from

the Plink program without delay.

6.3 Version of Plink

ForEachBox includes a special version of the Plink binary. This has been slightly

altered to force it to send any message without delay to ForEachBox. The

standard version works as well, but some output from the Plink application itself

will be shown just when the process has ended. This is text usually shown in blue

color. Normal device output is unaffected and will show in the log immediately.

The following lines of the source code for version 0.62 have been altered:

File WINPLINK.C Line 288
 /*
 * disable any output buffering

http://www.mac-tools.org/putty-fur-mac-os-x/02/2012/

 * This is required to get messages from
 * Plink directly and not after exit.
 */
 setvbuf(stdout, NULL, _IONBF, 0);
 setvbuf(stderr, NULL, _IONBF, 0);

File WINMISC.C Lines 8 - 10:

#ifndef SECURITY_WIN32
#define SECURITY_WIN32
#endif

This was required to avoid a compiler error in MS Visual Basic 2005.

	1 Installation
	1.1 Security consideration

	2 General operation
	2.1 Login
	2.2 Device Prompt
	2.3 Jump Box Support
	2.4 Job Results

	3 Usage and settings
	3.1 Button Bar
	3.2 Job definition
	3.2.1 List of hostnames
	3.2.2 Commands List
	3.2.3 Global Parameters

	3.3 Authentication and Access
	3.3.1 Device Access
	3.3.2 Jump Box Access
	3.3.3 Security Options

	3.4 Messages logging
	3.5 Settings
	3.5.1 Plink Options
	3.5.2 File Logging
	3.5.3 Data Collection

	3.6 Dataset
	3.7 Scheduler
	3.8 Keyboard shortcuts
	3.9 Error Handling

	4 Automation
	4.1 Placeholder
	4.2 Command Macros
	4.2.1 CONDITION macro
	4.2.2 EXPECT macro
	4.2.3 VARIABLE macro
	4.2.4 QUERY macro
	4.2.5 COLLECT macro
	4.2.6 REPLACE macro
	4.2.7 LOOP macro
	4.2.8 EDIT macro
	4.2.9 TIMEMOUT macro
	4.2.10 WAIT macro
	4.2.11 Macro Flow Chart

	4.3 Command Syntax
	4.4 Script Examples

	5 Hints and Caveats
	5.1 Limits
	5.2 Known Problems

	6 Operating Systems
	6.1 Linux
	6.2 Mac OSX
	6.3 Version of Plink

